future of protein production with plates with healthy food and protein

Project begins to revolutionize bioprinting of living materials

May 23, 2023

The European-funded PRISM-LT project is set to shape the future of engineered living materials in the EU. The project aims to develop a versatile bioprinting platform that addresses critical challenges in the adoption of these technologies and primarily targets biomedical and food applications.

Recent advancements in cell engineering and additive manufacturing have created exciting new opportunities for the production of Engineered Living Materials (ELMs), which can be made up entirely or in part of living cells. By precisely organizing different lineages of cells to create a hierarchical structure, ELMs can achieve multifunctional properties that rival and, in some cases, exceed those of natural living materials and traditional non-living materials.

However, to unlock the full potential of living tissue manufacturing, significant hurdles must be overcome, such as achieving controlled printability at a viable scale and speed in the market. Only then can the true potential of ELMs be unleashed.

To bolster the field, the European Innovation Council has established a fund dedicated to Engineered Living Materials projects. In this context, the PRISM-LT project received a €2.3 million grant for a five-year program that aims to create an adaptable platform for 3D bioprinting of living tissue with dynamic functionalities and predictable shapes.

Inspired by natural tissue development mechanisms, PRISM-LT will design heterogeneous 3D printable living materials that can build themselves into complex living tissues, including muscle-fat interfaces, at all relevant scales from sub-millimeter to centimeter.

To achieve this goal, PRISM-LT will create a novel tunable bioink that fosters a symbiotic relationship between stem cells and surrounding microorganisms, thus supporting stem cell differentiation toward a specific lineage.

The project will put its platform to the test by developing biomaterials for two primary applications. The first application involves creating organoids as in vitro models for preclinical research, which could aid in the discovery and testing of new drugs or therapies. The second application aims to engineer synthetic meat that closely mimics its natural counterpart, incorporating typical marbling, texture, nutritional values, and safety.

“Thanks to a multidisciplinary consortium PRISM-LT is a game-changer for bioprinting living materials. We tackle specific biomedical and food applications, but the platform is very flexible and has several applications,” explained Professor Massimo Vassalli from the University of Glasgow and scientific coordinator of the PRISM-LT project and concept originator.

Indeed the project includes four universities (the University of Glasgow, Chalmers University of Technology, Radboud University, and the University of Aveiro), a non-profit company dedicated to innovation with social impact (IN society), and the 3D bioprinting company CELLINK, overall representing Italy, Portugal, Sweden, the Netherlands, and the United Kingdom.

“We are proud that the European Innovation Council has recognized our technology as a disruptive innovation for Engineered Living Materials," added Laura Martinelli, CEO of IN society and coordinator of the project. "With PRISM-LT, the possibilities for ELMs are endless, and we are ready to usher in a new era of bioprinting.”

If you have any questions or would like to get in touch with us, please email info@futureofproteinproduction.com

About the Speaker

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Every week, you’ll receive a compilation of the latest breakthroughs from the global alternative proteins sector, covering plant-based, fermentation-derived and cultivated proteins.

View the full newsletter archive at Here

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.